空気式壁面太陽集熱システムに関する研究 -大型ソーラーシミュレータによる室内実験-

会員 ○ 三木 康臣(北見工大) 会員 相曽 一浩(矢崎総業㈱)
会員 浅井 俊二(矢崎総業㈱)会員 駒野 清治(EOM㈱)
荏原 幸久(EOM㈱)

Studies on Wall Surface Solar Air Heaters

- Indoor Experiments Under Large Solar Simulator -

Yasutomi MIKI*1, Kazuhiro AISO*2, Shunji ASAI*2, Seiji KOMANO*3 & Yukihisa EBARA*3

*1 Kitami Institute of Technology

165 Koen-cho, Kitami, Hokkaido, 090-8507, JAPAN Phone+81-157-26-9210 Fax.+81-157-26-9237

*2 YAZAKI Corporation

*3 EOM Corporation

ABSTRACT

The heat collecting performance of the wall surface solar air heater with multi slits has been analyzed experimentally. Experiments on characteristics of heat generation were carried out under a large-scale solar simulator. Comparison between these results and the results reported on the solar air heater with perforated aluminum panels was also showed.

Keywords: Solar heat, Air-type, Wall surface heat collecting system, Ventilation, Large solar simulator

1. 緒言

建物外壁の外側に多数の小孔を開けた集熱部を構成し、 その小孔を通してパネル表面に沿って流れる暖かい空気を 建物内に導入する方法(SOLARWALL®と称する)は、 J.C.Hollick¹により開発され、カナダや米国等の工場で採用 されている。わが国でも、三和シャッター恵庭工場での工 場換気に採用されるなど一部事例があり、小金井らの一連 の研究 ²⁾がある。

建築物外壁に集熱部を構成する空気式太陽熱利用に関し ては、従来の研究蓄積は少ないが、集熱性能と意匠面で優 れた壁面集熱体を開発することが本研究の目的である。

著者らは、8種類の集熱構造をもつ小型試験体について 屋外にて比較実験を行い、スリット吸込み構造が小孔構造 よりも優位であることを確認した。³⁾また、実大試験体につ いても透過体付を含めた屋外での比較試験を行った。²⁾

本報告では、前年度の報告³⁾で性能的に優位とされたスリ ット吸込み構造をもつ空気式壁面太陽集熱体 (SOLARVENT[®]と称する)について、大型ソーラーシミュ レータ下での室内試験を実施した結果を報告する。

2. 実験装置と方法

図1に SOLARVENT(以下、SV と呼ぶ)の概略を、写真 1にその外観を示す。SV は、790×1,800(有効集熱面積 1.351m²)でガルバリウム鋼板製(黒色塗装で非選択吸収膜) である。集熱面は 5mm 幅の外気吸込スリットが 115mm 間 隔で 15 段あり、熱交換部は直接外気に晒されることのない 構造である。(図中には第3段目スリットのみ示した)

本実験は、大型ソーラーシミュレータによる室内実験で あり、透過体付の通常の集熱体とほぼ同様の方法で実施さ れた³⁾。図2にその概要を示す。ソーラーシミュレーターを 傾斜角度42°(エアマスAM 1.5)とし、これと平行に向き 合うように同じ傾斜角度に試験架台上の共試験体(SV)を設 置する。ソーラーシミュレーター光源部の20個のキセノン ランプ(8kW×20)を調節して人工光が照射される。照射 強度はSV集熱面9点の測定値の平均値とした。実験室の対 偶に設けられた外気取り入れ口より外気を導入することに より、室内気温をほぼ一定に保った。

SV への吸い込み通気はダクト最下流に設置したシロッ

コファンで行い、安定化電源とボルトスライダーによりそ の通気流量を調節した。通気流量は、整流エレメントとピ トー管を組み合わせて測定した。外部風速は、試験架台前 方から風洞により与えた。

なお、出口空気温度12点の他、較正済みの ϕ 0.32T型熱電 対を、パネル表面に1点、パネル内に9点設置した。(セン

Fig. 1 Outline of SV panel.

Photo 1 Overview of SV Panel

Fig.2 Outline of experimental apparatus.

3.実験結果と考察

図3に集熱面積あたりの通気量 V/A が77.4m³/h/m²の場 合の集熱効率線図を示す。透過体付きの通常の集熱体³⁾ (V/A が78.9m³/h/m²)と比較すると、周囲風速 W が 0m/s の場合には集熱効率の乖離は目立たないが、W=3m/s では SV の場合が大きく下回り、透過体がない場合には周囲風速 の影響が大きいことが明らかになった。

Fig. 3 Relationship between collecting efficiencies and collecting variables. (W=0,3 [m/s])

サーの配置は図1に示した)入口空気温度は、百葉箱に設 置したアスマン通風乾湿計で測定した空気温度とした。

図4に集熱面積あたりの通気量と集熱効率の相関を示す。 通気量が増すと集熱効率は増加する。通気量が集熱効率に 及ぼす影響は透過体付きの通常集熱体よりも大きい。

図5に周囲風速と集熱効率の相関を示す。周囲風速が増 すと集熱効率は低下するが、次第にその影響は飽和してい く。周囲風速が増すと、パネル外表面に沿った高温の空気 層が剥ぎ取られることが原因と思われる。

図6は、外部風速Wが0m/sの場合の照射量と空気温度 上昇度の相関を示す。図7に、IとΔtの相関に直線相関

Fig. 4 Relationship between collecting efficiencies and wind velocities

Fig. 5 Relationship between collecting efficiencies and wind velocities.

性を仮定した場合の比例係数 a とし、この温度上昇度 a と 通気流量の相関を図示した。なお、周囲風速は無風時であ る。図中に示したカナダ NSTF のデータ¹⁾と比較して、実

Fig. 6 Relationship between rise in temperature and intensity of irradiance

Fig. 7 Relationship between the rate of temperature rise and intensity of irradiance

用上の集熱面積あたりの通気量の範囲で、SOLARVENT が優越した。なお、文献1のSOLARWALLの仕様の詳細 は不明なので、あくまでこの対比は参照に留める。ただ、 小形試験体による屋外試験の結果と矛盾しない結果を示し ている。

4.結言

集熱面が非膜黒色塗装の SOLARVENT の集熱性能を大型ソーラーシミュレータ下の室内実験により評価した結果、 以下の知見を得た。

- (1) 透過体付きの標準的空気式太陽集熱器と比較して、無風時には集熱効率は極端には低減しなかった。風速 3m/sでは、一部約20%もの集熱効率の低下が観られた。
- (2) 通気量が増すと、集熱効率は増加する。
- (3) 周囲風速が増すと集熱効率は低下し、次第にその影響 は飽和する。
- (4) 温度上昇率は SOLARWALL の文献値を

なお、本研究は、矢崎総業㈱環境システム開発センター と北見工業大学の産学連携の共同研究(2006年度-2007年 度)として実施された。

参考文献

1) J.C. Hollick, Renewable Energy, Vol.5, Part1, pp.41, (1994).

- 2) 生田紀夫他 5 名、太陽/風力講論、pp.293、(2003).
- 3) 駒野青治他1名、太陽/風力講論、pp.329、(2006).
- 4) 三木康臣他4名、太陽エネルギー、pp.67、(2006).